Minéralogie de la Terre Profonde

Eglantine Boulard

Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, 75252 Paris Cedex 05, France

18/11/2023

CNrs

Structure Simplifiée de la Terre :

croûte continentale/océanique: 0.4 poids % ; 0.8 volume %

18/11/2023 © C. Duflot

Structure Simplifiée de la Terre :

Accéder à la Terre Profonde

()

Inf.

2900 km

Deepest drilling S3G –Kola peninsula (Russia) – 12262 m

Depuis 2023, Basin Tarim, Chine : objectif 11 km

18/11/2023

A.Mi.S.

Echantillons de la Terre Profonde

2900 km

Echantillons de la Terre Profonde

Péridotite & Péridotite à grenat

Fusion partielle

< 300 km

< 300 km

Diamants avec inclusions du début du manteau inférieur

© Evan Smith

Jusqu'a 800 – 900 km Zone localisée

A.Mi.S.

6

Notre approche

OBSERVATIONS:

Géochimie – Cosmochimie Géodésie, Gravimétrie, Sismologie

MODELES & INTERPRETATIONS:

Chaque hypothèse mène à une origine, évolution ou géochimie profonde différente

A.Mi.S.

PETROLOGIE EXPERIMENTALE:

Propose des Candidats

18/11/2023

Reproduire les Conditions Extrêmes

Cellule à enclume de diamant avec chauffage laser

Shen & Mao, 2017

Echantillons Synthétisés : Les six aveugles et l'éléphant

18/11/2023

Multiplier les Analyses

Modèle d'un Manteau Pyrolitique

Compositions Chimiques:

	Pyrolite ^a	Harzburgite ^a	\mathbf{MORB}^b
SiO_2	38.9	36.4	52.2
Al_2O_3	2.2	0.7	10.2
CaO	3.1	0.9	14.8
MgO	50.0	56.6	15.8
FeO	5.8	5.4	7.0
Mg/Si	1.29	1.55	0.30
Fe/Si	0.15	0.15	0.13
Ca/Si	0.08	0.02	0.28
Al/Si	0.11	0.04	0.39

Minéralogie Mantélique Pyrolitique 0-20 km

Minéralogie Mantélique Pyrolitique 0-20 km

Phase Alumineuse à Haute Pression

Transitions de Phase de l'Olivine

Transitions de Phase de l'Olivine

Transitions de Phase de l'Olivine

Transitions de Phase des Pyroxenes

Modifie d'après Fei and Bertka, 1999

2900 km

Pyroxènes incorporent Na, Ca, etc..

Majorite Mg₃(MgSi)(SiO₄)₃ Incorpore Fe,Ca, Al ...

Passage au Manteau Inférieur

Passage au Manteau Inférieur

Le Calcium diffuse petit à petit dans la phase majorite qui éventuellement deviant saturée et se transforme en CaSiO₃ Ca₃Al₂Si₃O₁₂ Grenat + ³/₄(Mg,Fe)₄Si₄O₁₂ Grenat = 3CaSiO₃ Pérovskite + (Mg,Fe)₃Al₂Si₃O₁₂ Grenat

18/11/2023

De la Physique des Minéraux à la Minéralogie

Bridgmanite (Mg)SiO₃

MINERALOGY

18/11

Science 2014

Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite

Oliver Tschauner,¹⁴ Chi Ma,² John R. Beckett,² Clemens Prescher,³ Vitali B. Prakapenka,³ George R. Rossman²

Meteorites exposed to high pressures and temperatures during impact-induced shock often contain minerals whose occurrence and stability normally confine them to the deeper portions of Earth's mantle. One exception has been MgSiO₃ in the perovskite structure, which is the most abundant solid phase in Earth. Here we report the discovery of this important phase as a mineral in the Tenham L6 chondrite and approved by the International Mineralogical Association (specimen IMA 2014-017). MgSiO₃ perovskite is now called bridgmanite. The associated phase assemblage constrains peak shock conditions to -24 gigapascals and 2300 keVin. The discovery concludes a half century of efforts to find, identify, and characterize a natural specimen of this important mineral.

Hiroseite FeSiO₃

Science Advances, 2020

Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite

Luca Bindi¹*, Sang-Heon Shim², Thomas G. Sharp², Xiande Xie³

Bridgmanite, MgSIQ, with perovskite structure, is considered the most abundant mineral on Earth. On the lower mantle, it contains Fe and AI that strongly influence its behavior. Experimentalists have debated whether iron may exist in a mixed valence state, coexistence of Fe³⁺ and Fe³⁺ in bridgmanite, through charge disproportionation. Here, we report the discovery of Fe-rich aluminous bridgmanite coexisting with metallic iron in a shock vein of the Sublow meteorite. This is the first direct evidence in nature of the Fe disproportionation reaction, would have played a key role in redox processes and the evolution of Earth.

10 μm MgSiO₃ HiR HiR S μm MgSiO₃

Davemaoite CaSiO₃

Science, 2021

RESEARCH

MINERALOGY

Discovery of davemaoite, CaSiO₃-perovskite, as a mineral from the lower mantle

Oliver Tschauner¹*, Shichun Huang¹, Shuying Yang², Munir Humayun², Wenjun Liu³, Stephanie N. Gilbert Corder⁴, Hans A. Bechtel⁴, Jon Tischler³, George R. Rossman⁵

Calcium silicate perovskite, CaSiO₃, is arguably the most geochemically important phase in the lower mantle, because it concentrates elements that are incompatible in the upper mantle, including the heat-generating elements thorium and uranium, which have half-lives longer than the geologic history of Earth. We report CaSiO₂-perovskite as an approved mineral (IMA2020-012a) with the name davermaoite. The natural specimen of davernaoite proves the existence of compositional heterogeneity within the lower mantle. Our observations indicate that davernaoite also hosts potassium in addition to uranium and thorium in its structure. Hence, the regional and global abundances of davernaoite influence the heat budget of the deep mantle, where the mineral is thermodynamically stable.

Le Fer Dans le Manteau Inférieur

A.Mi.S.

Bridgmanite (Mg,Fe)(Si,**Al**)O₃

 $3Fe^{2+} = Fe^{0} + 2Fe^{3+}$

La quantité de Fe³⁺ n'est plus sensible à la fugacité d'oxygène mais à la quantité d'aluminium :
➢ Le manteau inférieur est saturé en Fer métal

Paradoxe du Redox Mantellique

Paradoxe du Redox Mantellique : Un Peu de GéoPoésie

Limite Noyau Manteau

Couche D"

Bridgmanite

Post-Perovskite (Mg,Fe)SiO₃

Orientation préférentielle dans un slab en subduction => anisotropie sismique

18/11/2023

Sup.

ΤZ

Inf.

2900 km

410 km

670 km

Sauf Que ...

SEISGLOB2

18/11/2023

Transport de L'Eau Dans le Manteau

Newsroom Media & Communications Office

Newsroom Photos - Videos Fact Sheets Lab History News Categories

Contact: Karen McNulty Walsh, (631) 344-8350, or Peter Genzer, (631) 344-3174

share: 🗗 💟 in 🔒

The following news release on a paper published today in the journal *Science* was issued by Northwestern University. The research was conducted, in part, at the National Synchrotron Light Source at the U.S. Department of Energy's Brookhaven National Laboratory.

New Evidence for Oceans of Water Deep in the Earth

Water bound in mantle rock alters our view of the Earth's composition

1

Inf.

June 13, 2014

18/11/2023

H^+ , OH^+ , H_2O

-> Au sein de phases hydratées -> Au sein de phases nominalement anhydres

Home > World News > Scientists Discover Massive "Ocean" Near Earth's Core

Scientists Discover Massive "Ocean" Near Earth's Core

The study confirmed something that it was only a theory, namely that ocean water accompanies subducting slabs and thus enters the transition zone.

World News | Edited by Anjali Thakur | Updated: October 02, 2022 7:51 am IST

Phases Nominalement Anhydres en Zone de Transition

2900 km

Passage de la Zone de Transition au Manteau Inférieur

30

Passage de la Zone de Transition au Manteau Inférieur

0.68 to 1% de fusion partielle qui pourrait expliquer la réduction des V_P

Phases Denses Hydratées Silicatées et Magnésiennes

Phases Denses Hydratées Silicatées et Magnésiennes et Alumineuses!

2900 km

Ohira et al., 2014

Phases Denses Hydratées Alumineuses

34

Phases Denses Hydratées Alumineuses et Ferreuses !

Que se Passe t'il Autour de 1500 km?

Durand et al., Geophys. J. Int., 2017

Changement de Configuration Electronique du Fer

Dissolution de la Davemaoite Dans la Bridgmanite

Nouveaux Oxides de Fer à Partir de 1500 km

Nouvelle Valence de l'Oxygène

L'Hydrogène Devient Superionique

Haute diffusivité de l'hydrogène => Modifie les mécanismes de transport de charge and masse:

(conductivité électrique, magnétisme, oxydo-réduction, la circulation de l'hydrogène et mélange isotopique dans la terre

profonde) 18/11/2023

2900 km

Nouvelle Vision du Manteau Inférieur

Au-delà de 1500-1800 km de profondeur :

- nouvelles stoechiométries d'oxyde de fer et production d'oxygène
- Changement de configuration électronique des éléments de transitions : modification de la conductivité thermique et du partage du fer
- passage à un domaine à une seule pérovskite : Bridgmanite riche en Calcium
- Hydrogène superionique
- valence de l'oxygène possible à -1 dans les phases hydratées
- Stochiométrie des minéraux basée sur la valence ionique de Na⁺, Mg²⁺, Fe²⁺, Fe³⁺, Al³⁺, Cl⁻, O²⁻, etc. n'existe plus

Mao et Mao, 2020